差值工具中克里金法的工作原理
克里金法是通过一组具有 z 值的分散点生成估计表面的高级地统计过程。与插值工具集中的其他插值方法不同,选择用于生成输出表面的最佳估算方法之前,有效使用克里金法工具涉及 z 值表示的现象的空间行为的交互研究。
工具/原料
arcgis软件
电脑
什么是克里金法?
1、IDW(反距离加权法)和样条函数法插值工具被称为确定性插值方法,因为这些方法直接基于周围的测量值或确定生成表面的平滑度的指定数学公式。第二类插值方法由地统计方法(如克里金法)组成,该方法基于包含自相关(即,测量点之间的统计关系)的统计模型。因此,地统计方法不仅具有产生预测表面的功能,而且能够对预测的确定性或准确性提供某种度量。
2、克里金法假定采样点之间的距离或方向可以反映可用于说明表面变化的空间相关性。克里金法工具可将数学函数与指定数量的点或指定半径内的所有点进行拟合以确定每个位置的输出值。克里金法是一个多步过程;它包括数据的探索性统计分析、变异函数建模和创建表面,还包括研究方差表面。当您了解数据中存在空间相关距离或方向偏差后,便会认为克里金法是最适合的方法。该方法通常用在土壤科学和地质中。
克里金法公式
1、由于克里金法可对周围的测量值进行加权以得出未测量位置的预测,因此它与反距离权重法类似。这两种插值器的常用公式均由数据的加权总和组成:其中:Z(si)= 第i个位置处的测量值λi= 第i个位置处的测量值的未知权重s0= 预测位置N= 测量值数

6、通常,各位置对的距离都是唯一的,并且存在许多点对。快速绘制所有配对则变得难以处理。并不绘制每个配对,而是将配对分组为各个步长条柱单元。例如,计算距离大于 40 米但小于 50 米的所有点对的平均半方差。经验半变异函数是 y 轴上表示平均半变异函数值,x 轴上表示距离或步长的图(请参阅下图)。


3、块金从理论上讲,在零间距(例如,步长 = 0)处,半变异函数值是 0。但是,在无限小的间距处,半变异函数通常显示块金效应,即值大于 0。如果半变异函数模型在 y 漭晦署犷轴上的截距为 2,则块金为 2。块金效应可以归因于测量误差或小于采样间隔距离处的空间变化源(或两者)。由于测量设备中存在固有误差,因此会出现测量误差。自然现象可随着比例范围变化而产生空间变化。小于样本距离的微刻度变化将表现为块金效应的一部分。收集数据之前,能够理解所关注的空间变化比例非常重要。
4、进行预测找出数据中的相关性或自相关性(请参阅上面的变异分析部分)并完成首次数据应用后(即,使用数据中的空间信息计算距离和执行空间自相关建模),您可以使用拟合的模型进行预测。此后,将撇开经验半变异函数。现在即可使用这些数据进行预测。与反距离权重法插值类似,克里金法通过周围的测量值生成权重来预测未测量位置。与反距离权重法插值相同,与未测量位置距离最近的测量值受到的影响最大。但是,周围测量点的克里金法权重比反距离权重法权重更复杂一些。反距离权重法使用基于距离的简单算法,但是克里金法的权重取自通过查看数据的空间特性开发的半变异函数。要创建某现象的连续表面,将对研究区域(该区域基于半变异函数和附近测量值的空间排列)中的每个位置或单元中心进行预测。
5、克里金方法有两种克里金方法:普通克里金法和泛克里金法。普通克里金法是最普通和广泛使用的克里金方法,是一种默认方法。该方法假定恒定且未知的平均值。如果不能拿出科学根据进行反驳,这就是一个合理假设。泛克里金法假定数据中存在覆盖趋势,例如,可以通过确定性函数(多项式)建模的盛行风。该多项式会从原始测量点扣除,自相关会通过随机误差建模。通过随机误差拟合模型后,在进行预测前,多项式会被添加回预测以得出有意义的结果。应该仅在您了解数据中存在某种趋势并能够提供科学判断描述泛克里金法时,才可使用该方法。
6、半变异函数图形克里金法是一个复杂过程,需要的有关空间统计的知识比本主题中介绍的还要多。使用克里金法之前,您应对其基础知识全面理解并对使用该技术进行建模的数据的适宜性进行评估。如果没有充分理解该夸臾蓠鬏过程,强烈建议您查看本主题结尾列出的一些参考书目。克里金法基于地区化的变量理论,该理论假定 z 值表示的现象中的空间变化在整个表面就统计意义而言是一致的(例如,在表面的所有位置处均可观察到相同的变化图案)。该空间一致性假设对于地区化的变量理论是十分重要的。
7、数学模型下面是用于描述半方差的数学模型的常用形状和方程。

