非负数的性质是什么

2025-05-21 03:51:46

如下:

①数轴上,原点和原点右边的点表示的数都是非负数。

②有限个非负数的和仍为非负数,即若为非秽煅笛琐负数,则。

③有限个非负数的和为零,那么每一个加数也必为零,即若

为非负数,且,则必有。

在利用非负数解决问题的过程中,这条性质使用得最多。

④非负数的积和商(除数不为零)仍为非负数。

⑤最小非负数为零,没有最大的非负数。

⑥一元二次方程

有实数根的充要条件是判别式

为非负数。

应用非负数解决问题的关键在于能否识别并揭示出题目中的非负数,正确运用非负数向有关概念及其性质,巧妙地进行相应关系的转化,从而使问题得到解决。

非负数的性质是什么

例1:已知m、n为实数,且√(5m-2) 十√(2-5m) 十n=10,求mn的值。

分析:要使根号下有意义,有5m-2≥0且2-5m≤0,所以5m-2=0,解得m=2/5,则n=10,

因此mn=2/5×10=4。

例2:已知m是实数,且(m^2+7m-18)√(m-5)=0,求m^2十2m一3的值。

分析:由题意得m^2十7m一18=0或m一5=0,解得m=一9,2,5,当m=一9,2时,√(m-5)无意义,故m=5。

所以m^2十2m一3=25十10一3=32。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢