如何分析搜索引擎算法
1、第一种算法、PageRank算法 1998年,SergeyBrin和LawrencePage提出了PageRank算法。该算法基于“从许多优质的网页链接过来的网页,必定还是优质网页”的回归关系,来判定网页的重要性。该算法认为从网页A导向网页B的链接可以看作是页面A对页面B的支持投票,根据这个投票数来判断页面的重要性。当然,不仅仅只看投票数,还要对投票的页面进行重要性分析,越是重要的页面所投票的评价也就越高。根据这样的分析,得到了高评价的重要页面会被给予较高的PageRank值,在检索结果内的名次也会提高。PageRank是基于对“使用复杂的算法而得到的链接构造”的分析,从而得出的各网页本身的特性。
2、 分析:PageRank算法的优点在于它对互联网上的网页给出了一个全局的重要性排序,并且算法的计算过程是可以离线完成的,这样有利于迅速响应用户的请求。不过,其缺点在于主题无关性,没有区分页面内的导航链接、广告链接和功能链接等,容易对广告页面有过高评价;另外,PageRank算法的另一弊端是,旧的页面等级会比新页面高,因为新页面,即使是非常好的页面,也不会有很多链接,除非他是一个站点的子站点。这就是PageRank需要多项算法结合的原因
3、 第二种算法、Hilltop算法 HillTop,是一项搜索引擎结果排序的专利,是Google的一个工程师Bharat在2001年获得的专利。HillTop算法的指导思想和PageRank是一致的,即都通过反向链接的数量和质量来确定搜索结果的排序权重。但HillTop认为只计算来自具有相同主题的相关文档链接对于搜索者的价值会更大,即主题相关网页之间的链接对于权重计算的贡献比主题不相关的链接价值要更高。在1999-2000年,当这个算法被Bharat与其他Google开发人员开发出来的时候,他们称这种对主题有影响的文档为“专家”文档,而只有从这些专家文档页面到目标文档的链接决定了被链接网页“权重得分”的主要部分。