7种常用的聚类方法
1、磷挎菪闲划分方法:给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。而且这K个分组满足下列条件:(1)每一个分组至少包含一邗锒凳审个数据纪录;(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好。

3、基于密度的方法:基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“恽贴淑溪类圆形”的聚类的缺点。这个方法的指导思想就是,只要一个区域中的点的密度大过某个阀值,就把它加到与之相近的聚类中去。

5、基于模型的方法:基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。

7、最大最小距离聚类算法:这种方法的核心思想是先计算出聚类中心,再把所有的样本点按照就近原则,归到离自身最近的聚类中心所对应的类。最大最小是指在所有的最小距离中选取最大的。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:50
阅读量:20
阅读量:54
阅读量:53
阅读量:45