分析有哪些常见的数学思想方法
1、转化思想。这是最基本的数学思想,如在运用换元法解方程时通过“换元”,把结构复杂的方程化为结构简单的。掌握转化思想有利于我们从更高的层次去揭示、把握数学知识、方法之间的一些内在联系,树立辩证的观点,提高分析问题和解决问题的能力。
2、函数思想。用运动变化的观点,分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系表示出来并加以研究,从而使问题得到解决。方程思想,就是瞀闩程狨从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。
3、数形结合思想。具体来说,就是把数量关系的问题,转化为图形问题,利用图形的性质得出结论,再回到数量关系上对问题做出回答;反过来,把图形问题转化成一个数量关系问题,经过计罪拈藉麝算或推论得出结论再回到图形上对问题做出回答,这是解决数学问题常用的一种方法。
4、分类讨论思想。是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。分类依赖于标准的确定,不同的标准会有不同的分类方式。
5、总之,数学思想方法是分析解决数学问题的灵魂,也是训练提高数学能力的关键,更是由知识型学习转向能力型学习的标志。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:73
阅读量:21
阅读量:33
阅读量:42
阅读量:67