三角形旁心的概念及一些结论
1、三角形旁切圆的圆心,简称为三角形旁心,它是三角形一个内角的平分线和其他两个内角的外角平分线的交点;任何三角形都存在三个旁切圆,三个旁心,旁心都在三角形外部。如图,在△ABC中,∠BAC、∠DBC和∠ECB的角平分线交于点O1,∠ABC、∠FCA、∠GAC的角平分线交于点O2,∠ACB、∠HAB和∠MBA的角平分线交于点O3,点O1、O2、O3就是△ABC的旁心。其中,AO1、BO2、CO3交于点O,点O就是△ABC的内心。

2、旁心到三角形三边的距离相等。如图,点O是△ABC的旁心,OD垂直BC于点D,OE垂直AC于点E,OF垂直BA于点F,则有结论:OD=OE=OF。

3、旁心张角:三角形两个外角平分线的夹角就是三角形旁心张角。如图,OC平分∠BCE,OB平分∠CBD,则有结论:∠BOC=90°-1/2∠CAB。

4、如图,a、b、c是△ABC的三边,点O是△ABC的旁心,OD垂直AB于点D,OE垂直AC于点E,则有结论:AD=AE=(a+b+c)/2。

5、如图,在△ABC中,OB平分∠ABC,OC平分∠ACD,
则有结论:∠BOC=1/2∠A。

6、直角三角形斜边上的旁切圆半径等于三角形周长的一半。在Rt△ABC中,
∠ACB=90°,点O 是斜边AB边上的旁切圆的圆心,则有结论:
R=(a+b+c)/2。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:148
阅读量:81
阅读量:90
阅读量:116
阅读量:28