根式函数y=√(5x-√2x)的图像
1、本题函数特征是含有根式,且为根式嵌套,则可根据根式的定义要求,求出x的取值范围,即为本题函数的定义域。

2、形如y=f(x),则x是自变量,它代表着函数图像上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。
3、使用导数工具解析函数的单调性,首先计算函数的一阶导数,根据导数的符号,即可判断函数的单调性。

4、 如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5、计算函数的二阶导数,根据二阶导数的符号,即可解析函数y的凸凹性。

6、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。
7、函数的极限,求出函数在定义域端点处的极限。

8、结合以上函数性质,函数上部分点列举图表如下。

9、综合以上函数的性质,函数的示意图如下:

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:31
阅读量:58
阅读量:47
阅读量:164
阅读量:103