如何证明开普勒第二定律
由于万有引力充当向心力,所以角动量守恒定律给出(m为行星质量,r为行星到太阳的距离,θ为行星速度与行星和太阳之间连线的夹角):L=m(r^2)w=潮贾篡绐Const,解出r²,得到,r^2=L/(mw)。
同时,极坐标形式下,面积元为:dS=(1/2)(r^2)dθ,代入上面的求得的r²,可以得到:dS=L/(2mw)dθ。又w=dθ/dt,即:dS=L/(2m)dt。得到了开普勒第二定律。
扩展资料:
开普勒定律适用于宇宙中一切绕心的天体运动。开普勒第二定律,或者是用几何语言,或者是用方程,将行星的坐标及时间跟轨道参数相连结。有效解决了对于天体运动规律的解释。
在研究天体的运动中,利用牛顿的力学和开普勒三大定律的有效结合,可以预测天体的运行轨道、运动速度、旋转周期,从而能够预测某一时刻到天体在空间中的位置,能够应用到天体探测、卫星发射等领域。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:95
阅读量:72
阅读量:88
阅读量:86
阅读量:36