CRM客户关系管理系统中数据挖掘的应用领域分析
数据挖掘技术使用关联分析、偏差分析、聚类分析和预测等方法完成对复杂客户的数据的处理,从而从数据钟将所需的分析结果提取出来。本文CRM客户管系统通过对据挖掘技术的应用,能够对群户群体、客户满意程度、交叉销售、客户盈利能力、客户流失情况进行分析。下面对这些应用领域进行分析和探讨。
客户群体分类应用
此应用主要是对电信的客户群针对不同特质进行细分。为了电信能够为不同的消费群体执行不同的消费政策。一般采用的数据挖掘技术为决策树和聚类方法。
维系客户应用
随着行业之间的竞争愈演愈烈,对于新客户的开发难度以及开发成本越来越大,这使得维系老顾客的重要性越发明显。要想从客户身上获得的价值更多,那么必然要做好维系它的工作。即回收此客户的开发成本以及维系费用的周期就越长,客户提供的利润就越多。
客户盈利能力应用
本应用的使用主要是通过对数据技术的使用达到提升客户盈利的能力的目的,根据用户的不同的市场活动,为提升客户的盈利采取不同的方法,主要通过已有的客户数据预测客户未知消费趋势和消费领域。
交叉销售应用
交叉销售应用主要通过数据挖掘技术为营销提供新产品需求和营销决策的过程。通数据挖掘技术可以分析和决策出潜在用户所感兴趣或具有非常大的市场需求的产品和服务,帮助企业实现利润最大化。通过分析客户的消费行为和已有产品的销售趋势,形成新产品和服务的营销决策。
分析潜在客户应用
企业对潜在客户的筛选工作可以借助数据挖掘技术帮助来完成,市场人员的主要工作是把通过数据挖掘技术得出的潜在客户名单进行整理,并把整理出的客户所中意的优惠措施系统相结合起来。在发展新客户的策略中,数据是数据挖掘技术的研究重点。首先要建立一个预测模型,它是以获得的客户数据为基础,然后预测模型根据一定的程序分析就能计算出有价值的潜在客户信息。
要想使用数据挖掘技术对新客户进行获取,必须对潜在客户的信息进行收集,尤其是对于一些表示出对公司产品或某项服务感兴趣客户要对其单独列出。这样可以为将来的数据挖掘提供足够有价值的信息。