凹函数的性质是什么

2025-05-14 13:17:19

凹函墙绅褡孛数的性质:如果一个可微函数f它的导数f'在某区间是单调上升的,也就是二阶导数若存在,则在此区间,二阶导数是大于零的,f就是凹的;即一个凹函数拥有一个下跌的斜率(当中下跌只是代表非上升而不是严谨的下跌,也代表这容许零斜率的存在。)

如果一个二次可微的函数f,它的二阶导数f'(x)是正值(或者说它有一个正值的加速度),那么它的图像是凹的;如果二阶导数f'(x)是负值,图像就会是凸的。当中如果某点转变了图像的凹凸性,这就是一个拐点。

如果凹函数(也就是向上开口的)有一个“底”,在底的任意点就是它的极小值。如果凸函数有一个“顶点”,那么那个顶点就是函数的极大值。如果f(x)是二次可微的,那么f(x)就是凹的当且仅当f''(x)是正值。

凹函数的性质是什么

凹函数特点

如果f(x)是凹函数,那么-f(x)即是凸函数,通常都是把凹函数转化为凸函数来研究。如果一元实函数f(x)在某区间二阶可导,那么这一函数为凹函数的充要条件是在这一区间上恒有f''(x)大于等于0(对于严格凹函数,只要改成f''(x)>0就可以了)。

在数学当中,凹函数是凸函数的相反。与凸函数(下凸)对比,这里的凹函数(上凸)应有:如果其二阶导数在区间上恒大于0,就称为凹函数。

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢