解析两个函数和函数y=ln(7x-6)+√(x^2-1)的性质
1、 介绍函数y=ln(2x-1)+√(x^2-1)的定义域、单调性、凸凹性等性质,并求解函数的单调和凸凹区间。
2、 得到根据对数函数和根式函数的定义要求,对数的真数为正数,二次根式要求为非负数,则可自变量满足的方程组,进而取交集,即可计算出函数的定义域。
3、由复左佯抵盗合函数单调性判断原理,即同增为增,异减为减,来分析本题两个和函数的单调性。∵y1=ln(7x-6)为增函数,y2=√(x^2-1) 为减函数,∴y=y1-y2=ln(7x-6)+√(x^2-1)为增函数。
4、计算函数的二阶导数,根据二阶导数的符号,可知函数在定义域上为凸函数。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:65
阅读量:39
阅读量:78
阅读量:57
阅读量:50