正弦函数y=2sin(2x+π/9)的周期单调等性质
1、三角函数y=2sin(2x+π/9)的定义域、值域、单调、周期、对称轴、切线等有关性质。

2、定义域:正弦三角函数y=2sin(2x+π/9)的定义域为全体实数,即定义域为(-∞,+∞)。
值域:正弦函数y=2sin(2x+π/9)的值域为[-2,2],
1、y=2sin(2x+π/9)当2x+π/9=0时,有:
x=-1/18*π.
即该函数y=2sin(2x+π/9)的中心对称点为:(-1/18*π,0)。

2、y=2sin(2x+π/9)单调增区间
2kπ-π/2≤2x+π/9≤2kπ+π/2,k∈Z,
2kπ-π/2-π/9≤2x≤2kπ+π/2-π/9,
2kπ-11π/18≤2x≤2kπ+7π/18
kπ-11π/18≤x≤kπ+7π/36
即该函数y=2sin(2x+π/9)的单调增区间为:
[kπ-11π/18,kπ+7π/36]


1、求函数y=2sin(2x+π/9)的导数及高阶导数的步骤为。
dy/dx=2cosx(2x+π/9)*2=4cos(2x+π/9);
二阶导数有:
d^2y/dx^2=-4sin(2x+π/9)*2=-8sin(2x+π/9).

2、y=2sin(2x+π/9)在点A((1/36)π,1)处,有:
y '=4cos[2*(1/36)π+π/9]=4cosπ/6=4√3/2,
则y=2sin(2x+π/9)函数在该点处的切线方程为:
y-1=4√3/2[x-(1/36)π]。


3、解:先求其中半个周期内x的坐标点,即:
C(-(1/18)π,0,),D((7/36)π,0).
此时围成的区域面积为:
S=∫[Cx,Dx]ydx
=∫[Cx,Dx]2sin(2x+π/9)dx
=∫[Cx,Dx]sin(2x+π/9)d(2x+π/9)
=-cos(2x+π/9)[-(1/18)π,(7/36)π]
=-(cosπ/2-cos0)
=1.

4、求直线y=12x/π+(2/3)与正弦函数y=2sin(2x+π/9)围成区域的面积。
解:y1=12x/π+(2/3)与y2=2sin(2x+π/9)
的交点分别为:
E(-(1/18)π,0,),F((1/36)π,1).
此时围成的区域面积S为:
S=∫[Ex,Fx](y2-y1)dx
=∫[Ex,Fx][2sin(2x+π/9)-12x/π-(2/3)]dx
=∫[Ex,Fx]sin(2x+π/9)d(2x+π/9)
-[12x^2/2π+(2/3)x][Ex,Fx]
=-cos(2x+π/9)[Ex,Fx]-1/24π
=-(cosπ/6-cos0)-1/24π
=2(2-√3)/4-1/24π.

