向学长们请教下,什么是归一化功率
归一化功率:就是将功沧鲎孳卣率(能量)进行归一化处理。添加功率归一化因子,目的在于使得不同调制方式(或者说对于所有伴阏持铹映射方式)都能够取得相同的平均功率。
实际上,归一化是为了方便系统性能的比较,所以就要分清比较的模块是什么。比如,信道编码的增益问题,无论有无信道编码,比特能量是一样的,所以比较要以Eb/No为基准,而不是以进入信道前的符号能量Es/No为基准。
再比如,在比较空时码系统和单天线系统中,还是以进入时空码编码前信号能量为基准,那么发送时的总能量一致,即时空码系统中各天线发射功率总和应和单天线系统发射功率相同。一般而言,归一化都在发射端处理。
归一化:是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为标量。 在多种计算中都经常用到这种方法。归一化是一种无量纲处理手段,使物理系统数值的绝对值变成某种相对值关系,简化计算,缩小量值的有效办法。
归一条件
在量子力学里,表达粒子的量子态的波函数必须满足归一条件,也就是说,在空间内找到粒子的概率必须等于1。这性质称为归一性。
归一化导引
一般而言,波函数是一个复函数。可是,概率密度是一个实函数,空间内积分和为1,称为概率密度函数。所以在区域内,找到粒子的概率是1。
因为粒子存在于空间,因此在空间内找到粒子概率是1,所以积分于整个空间将得到1。
假若,从解析薛定谔方程而得到的波函数,其概率是有限的,但不等于1,则可以将波函数乘以一个常数,使概率等于1。或者假若波函数内,已经有一个任意常数,可以设定这任意常数的值,使概率等于1。
扩展资料:
薛定谔方程的归一化
薛定谔方程为
其中,H是表征波函数总能量的哈密顿算符,
是物理系统的波函数,i是虚数。h是约化普朗克常数。
将波函数归一化为。则薛定谔方程成为
对于归一化,薛定谔方程是个不变式,因为薛定谔方程是个线性微分方程。
一个表达粒子量子态的波函数,必须满足粒子的薛定谔方程。既然和都能够满足同样的薛定谔方程,它们必定都表达同样的量子态。假若不使用归一化的波函数,则只能知道概率的相对大小;否则,使用归一化的波函数,可以知道绝对的概率。这对于量子问题的解析,会提供许多便利。
参考资料:百度百科-归一化