DSPf28335 直流电机测速、PID调速以及串口显示
1、头文件、宏定义
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "Example_posspeed.h" // Example specific Include file
#include <stdio.h>
#include <math.h>
Uint16 *ExRamStart = (Uint16 *)0x100000;
#define LED1 GpioDataRegs.GPBDAT.bit.GPIO54
#define LED2 GpioDataRegs.GPBDAT.bit.GPIO55
#define LED3 GpioDataRegs.GPBDAT.bit.GPIO56
#define LED4 GpioDataRegs.GPBDAT.bit.GPIO57
int V;//声明
float N;
int M;
void EPwmSetup();
interrupt void prdTick(void);
POSSPEED qep_posspeed=POSSPEED_DEFAULTS;//默认值
Uint16 Interrupt_Count = 0;
void scib_echoback_init(void);
void scib_fifo_init(void);
void scib_xmit(int a);
void scib_msg(char *msg);
2、增量式PID函数
struct _pid{
float setspeed;
float actualspeed;
float err;
float err_last;
float err_last2;
float kp,ki,kd;
}pid;
void pid_init(){
pid.setspeed=0;
pid.actualspeed=0;
pid.err=0.0;
pid.err_last=0.0;
pid.err_last2=0.0;
pid.kp=0.5;
pid.ki=0.3;
pid.kd=0.15;
}
void pid_realize()//增量式
{
pid.setspeed=150;
pid.actualspeed=V;
pid.err=pid.setspeed-pid.actualspeed;
float incrementspeed=pid.kp*(pid.err-pid.err_last)+pid.ki*pid.err+pid.kd*(pid.err-2*pid.err_last+pid.err_last2);//增量速度
pid.err_last2=pid.err_last;
pid.err_last=pid.err;
N=N-(incrementspeed/200);//占空比系数(占空比=SP*N)
if(N>0.5)
N=0.5;
else if (N<0)
N=0;
else
N=N;
} //没有考虑死区,没有设定上下限
3、GPIO配置函数
void configtestled(void)
{
EALLOW;
GpioCtrlRegs.GPBMUX2.bit.GPIO54 = 0; // GPIO6复用为GPIO功能
GpioCtrlRegs.GPBDIR.bit.GPIO54 = 1; // GPIO6设置为输出
GpioCtrlRegs.GPBMUX2.bit.GPIO55 = 0; //
GpioCtrlRegs.GPBDIR.bit.GPIO55 = 1;
GpioCtrlRegs.GPBMUX2.bit.GPIO56 = 0; // GPIO6复用为GPIO功能
GpioCtrlRegs.GPBDIR.bit.GPIO56 = 1; // GPIO6设置为输出
GpioCtrlRegs.GPBMUX2.bit.GPIO57 = 0; //
GpioCtrlRegs.GPBDIR.bit.GPIO57 = 1;
EDIS;
}
4、主函数
void main(void)
{
// char *msg;
N=1.0;
V=0;
// Uint16 ReceivedChar;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
InitEQep1Gpio();
InitEPwm2Gpio();
InitEPwm4Gpio();
InitScibGpio();
EALLOW;
GpioCtrlRegs.GPADIR.bit.GPIO4 = 1; // GPIO4 as output simulates Index signal
GpioDataRegs.GPACLEAR.bit.GPIO4 = 1; // Normally low
EDIS;
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT= &prdTick;//确定中断服务程序的入口地址
EDIS; // This is needed to disable write to EALLOW protected registers
pid_init();
EPwmSetup(); // This function exists in Example_EPwmSetup.c
// Step 5. User specific code, enable interrupts:
// Enable CPU INT1 which is connected to CPU-Timer 0:
IER |= M_INT3;
// Enable TINT0 in the PIE: Group 3 interrupt 1
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;//使能第三组中断的第一个小中断
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
//LoopCount=0;
//ErrorCount=0;
scib_fifo_init(); // Initialize the SCI FIFO
scib_echoback_init(); // Initalize SCI for echoback
// msg="\r\n\n\nStart the velocity measurement!\n\0";
// scib_msg(msg);
configtestled();
// LED1=1;
// DELAY_US(50000);
// LED2=0;
// DELAY_US(50000000);
// LED1=0;
// DELAY_US(50000);
// LED2=1;
// DELAY_US(5000000);
// LED1=0;
// LED2=0;
// DELAY_US(50000);
LED3=1;
DELAY_US(50000);
LED4=0;
DELAY_US(50000);
// LED3=0;
// DELAY_US(50000);
// LED4=1;
// DELAY_US(50000000);
// LED3=0;
// LED4=0;
qep_posspeed.init(&qep_posspeed);
while (1)
{
//int32 i=0;
// while(i<320000)
// {
pid_realize(); //PID调节
M=7500*N;
EPwm2Regs.CMPA.half.CMPA=M; //占空比更新
EQep1Regs.QFLG.bit.UTO==1; //高速测量中断产生
qep_posspeed.calc(&qep_posspeed);
// i++;
// }
scib_xmit(V); //串口显示
}
}
5、测速中断函数
interrupt void prdTick(void) // EPWM1 Interrupts once every 4 QCLK counts (one period)
{ Uint16 i;
// Position and Speed measurement
qep_posspeed.calc(&qep_posspeed);
// Control loop code for position control & Speed contol
Interrupt_Count++;
if (Interrupt_Count==2500) // Every 1000 interrupts(4000 QCLK counts or 1 rev.)
{
EALLOW;
GpioDataRegs.GPASET.bit.GPIO4 = 1; // Pulse Index signal (1 pulse/rev.)
for (i=0; i<700; i++){
}
GpioDataRegs.GPACLEAR.bit.GPIO4 = 1;
Interrupt_Count = 0; // Reset count
EDIS;
}
// Acknowledge this interrupt to receive more interrupts from group 1
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
EPwm1Regs.ETCLR.bit.INT=1;
}
6、串口发送函数、引脚配置函数
void scib_echoback_init()
{
// Note: Clocks were turned on to the SCIA peripheral
// in the InitSysCtrl() function
ScibRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
// No parity,8 char bits,
// async mode, idle-line protocol
ScibRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
// Disable RX ERR, SLEEP, TXWAKE
ScibRegs.SCICTL2.all =0x0003;
ScibRegs.SCICTL2.bit.TXINTENA = 1;
ScibRegs.SCICTL2.bit.RXBKINTENA =1;
ScibRegs.SCIHBAUD =0x0001; // 9600 baud @LSPCLK = 37.5MHz.
ScibRegs.SCILBAUD =0x00E7;
ScibRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
}
// Transmit a character from the SCI
void scib_xmit(int a)
{
while (ScibRegs.SCICTL2.bit.TXRDY == 0) {}
ScibRegs.SCITXBUF=a;
}
void scib_msg(char * msg)
{
int i;
i = 0;
while(msg[i] != '\0')
{
scib_xmit(msg[i]);
i++;
}
}
// Initalize the SCI FIFO
void scib_fifo_init()
{
ScibRegs.SCIFFTX.all=0x8000;
}
void InitScibGpio()
{
EALLOW;
GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0; // Enable pull-up for GPIO18 (SCITXDB)
GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0; // Enable pull-up for GPIO19 (SCIRXDB)
GpioCtrlRegs.GPAQSEL2.bit.GPIO18 = 3;
GpioCtrlRegs.GPAQSEL2.bit.GPIO19 = 3; // Asynch input GPIO19 (SCIRXDB)
GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 2; // Configure GPIO18 for SCITXDB operation
GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 2; // Configure GPIO19 for SCIRXDB operation
EDIS;
}