OpenCV:distanceTransform距离变换函数
1、OpenCV函数distanceTransform():功能:用来计算原图像中距离变换图像;void distanceTransform( InputArray src, OutputArray dst,OutputArray labels,int distanceType,int maskSize,int labelType=DIST_LABEL_CCOMP );函数说明:用于计算图像中每一个非零点像素与其最近的零点像素之间的距离,输出的是保存每一个非零点与最近零点的距离信息;图像上越亮的点,代表了离零点的距离越远。参数:src是单通道的8bit的二值图像(只有0或1)dst表示的是计算距离的输出图像,可以使单通道32bit浮点数据distanceType表示的是选取距离的类型,可以设置为CV_DIST_L1,CV_DIST_L2,CV_DIST_C等,具体如下: DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2| DIST_L2 = 2, //!< the simple euclidean distance DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|) DIST_L12 = 4, //!< L1-L2 metric: distance =2(sqrt(1+x*x/2) - 1)) DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)),c = 1.3998 DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c= 2.9846 DIST_HUBER = 7 //!< distance = |x|<c ? x^2/2 :c(|x|-c/2), c=1.345maskSize表示的是距离变换的掩膜模板,可以设置为3,5或CV_DIST_MASK_PRECISE,对 CV_DIST_L1 或CV_DIST_C 的情况,参数值被强制设定为 3, 因为3×3 mask 给出5×5 mask 一样的结果,而且速度还更快。labels表示可选输出2维数组;labelType表示的是输出二维数组的类型;
2、细化轮廓:代码如下:#include <opencv2\opencv.hpp>#include <opencv2\h足毂忍珩ighgui\highgui.hpp>#include <opencv2\features2d\features2d.hpp>#include <opencv2\core\core.hpp>using namespace std;using namespace cv;int main(){ Mat srcImg=imread("raw.jpg",1); Mat imageGray; cvtColor(srcImg,imageGray,CV_RGB2GRAY); imageGray=~imageGray; //对灰度图取反 GaussianBlur(imageGray,imageGray,Size(5,5),2); //滤波 threshold(imageGray,imageGray,20,200,CV_THRESH_BINARY); //阈值 imshow("threshold",imageGray); Mat distanceImg(imageGray.size(),CV_32FC1); //距离变换结果的Mat矩阵 distanceTransform(imageGray,distanceImg,CV_DIST_L2,3); //距离变换 Mat dist; normalize(distanceImg,dist, 0, 1, NORM_MINMAX); imshow("distanceImg",dist); Mat distShowImg; distShowImg=Mat::zeros(imageGray.size(),CV_8UC1); //定义细化后的字符轮廓 float maxValue=0;//距离变换矩阵中的最大值 for(int i=0;i<distanceImg.rows;i++) { for(int j=0;j<distanceImg.cols;j++) { if(distanceImg.at<float>(i,j) > maxValue) { maxValue=distanceImg.at<float>(i,j); //获取距离变换的极大值 } } } for(int i=0;i<distanceImg.rows;i++) { for(int j=0;j<distanceImg.cols;j++) { if(distanceImg.at<float>(i,j) > maxValue/1.9) { distShowImg.at<unsigned char>(i,j)=255; //符合距离大于最大值一定比例条件的点设为255 } } } imshow("Source Image",srcImg); imshow("thinImg",distShowImg); waitKey(0); return 0;}
3、查找物体质心:int main(){ Mat srcImg=imread("raw1.jpg",1); imshow("原图",srcImg); Mat imgGray; cvtColor(srcImg,imgGray,CV_RGB2GRAY); imgGray=~imgGray; GaussianBlur(imgGray,imgGray,Size(5,5),2); //滤波 threshold(imgGray,imgGray,20,200,CV_THRESH_BINARY); //阈值化 Mat distanceImg(imgGray.size(),CV_32FC1); //距离变换结果的Mat矩阵 distanceTransform(imgGray,distanceImg,CV_DIST_L2,3); //距离变换 Mat dist; normalize(distanceImg,dist, 0, 1, NORM_MINMAX); imshow("distanceImg",dist); Mat distShow; distShow=Mat::zeros(imgGray.size(),CV_8UC1); //细化后的字符轮廓 float maxValue=0; //距离变换矩阵中的最大值 Point Pt(0,0); for(int i=0;i<distanceImg.rows;i++) { for(int j=0;j<distanceImg.cols;j++) { distShow.at<unsigned char>(i,j)=distanceImg.at<float>(i,j); if(distanceImg.at<float>(i,j) > maxValue) { maxValue=distanceImg.at<float>(i,j); //获取距离变换的极大值 Pt=Point(j,i);//坐标 } } } circle(srcImg,Pt,maxValue,Scalar(0,0,255),3); circle(srcImg,Pt,3,Scalar(0,255,0),3); imshow("SImage",srcImg); imshow("Thin Image",distShow); waitKey(); return 0;}
4、编程思想:图像距离变换的一般步骤如下:①将输入图片转换为二值图像,前景设置为1,背景设置为0;②先遍历图像:左,左上,上,左下使用下面的公式进行计算。其中,D表示距离包括欧式距离,棋盘距离和麦哈顿距离;掩膜模板mask为maskL;f(p)为像素点p的像素值;③再次遍历图像,右,右上,右下,下;④根据模板maskL和maskR的扫描结果得到最终的距离变换图像。为了减少计算了量,采用了一种倒角模版的算法,只需要对图像进行两次扫描玖可以实现距离变换,该方法被称为chamfer倒角距离变换,该模版如下:
5、实现:#include <opencv2\opencv.hpp>#include <opencv2\highgui\highgui.hpp>#include <opencv2\features2d\features2d.hpp>#include <opencv2\core\core.hpp>using namespace std;using namespace cv;//计算欧氏距离的函数float calEuclideanDiatance(int x1, int y1, int x2, int y2){ return sqrt(float((x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1)));}//计算棋盘距离的函数int calChessboardDistance(int x1, int y1, int x2, int y2){ return max(abs(x1 - x2), (y1 - y2));}//计算麦哈顿距离(街区距离)int calBlockDistance(int x1, int y1, int x2, int y2){ return abs(x1 - x2) + abs(y1 - y2);}//距离变换函数的实现void distanceTrans(Mat &srcImage, Mat &dstImage){ CV_Assert(srcImage.data != nullptr); Mat grayImage, binaryImage; cvtColor(srcImage, grayImage, CV_BGR2GRAY); grayImage = ~grayImage; threshold(grayImage, binaryImage, 20, 200, THRESH_BINARY); imshow("二值化图像", binaryImage); int rows = binaryImage.rows; int cols = binaryImage.cols; unsigned char *pDataOne; unsigned char *pDataTwo; float disPara = 0; float fDisMIn = 0; //第一遍:遍历图像,使用左模板更新像素值 for (int i = 1; i < rows - 1; i++) { //图像的行指针的获取 pDataOne = binaryImageNaNr<uchar>(i); for (int j = 1; j < cols; j++) { //分别计算左模板掩码的相关距离 //PL PL //PL P //PL pDataTwo = binaryImageNaNr<uchar>(i - 1);//上一行 disPara = calEuclideanDiatance(i, j, i - 1, j - 1);//当前像素 左上角像素 fDisMIn = min((float)pDataOne[j], disPara + pDataTwo[j - 1]);//模板 disPara = calEuclideanDiatance(i, j, i - 1, j);//当前像素 上方像素 fDisMIn = min(fDisMIn, disPara + pDataTwo[j]); pDataTwo = binaryImageNaNr<uchar>(i);// disPara = calEuclideanDiatance(i, j, i, j - 1);//当前像素 左方像素 fDisMIn = min(fDisMIn, disPara + pDataTwo[j-1]); pDataTwo = binaryImageNaNr<uchar>(i+1); disPara = calEuclideanDiatance(i, j, i+1,j-1);//当前像素 左下方像素 fDisMIn = min(fDisMIn, disPara + pDataTwo[j - 1]); pDataOne[j] = (unsigned char)cvRound(fDisMIn); } } //第二遍:遍历图像,使用右模板更新像素值 for (int i = rows - 2; i > 0; i--)//hang { pDataOne = binaryImageNaNr<uchar>(i); for (int j = cols - 1; j >= 0; j--) //lie { //分别计算右模板掩码的相关距离 //pR pR //pR p //pR pDataTwo = binaryImageNaNr<uchar>(i + 1);//下一行 disPara = calEuclideanDiatance(i, j, i + 1, j); //下方 fDisMIn = min((float)pDataOne[j], disPara + pDataTwo[j]); disPara = calEuclideanDiatance(i, j, i + 1, j + 1);//右下方 fDisMIn = cv::min(fDisMIn, disPara + pDataTwo[j+1]); pDataTwo = binaryImageNaNr<uchar>(i); disPara = calEuclideanDiatance(i, j, i, j+1);//右方 fDisMIn = cv::min(fDisMIn, disPara + pDataTwo[j + 1]); pDataTwo = binaryImageNaNr<uchar>(i - 1); disPara = calEuclideanDiatance(i, j, i - 1, j + 1); //右上方 fDisMIn = min(fDisMIn, disPara + pDataTwo[j + 1]); pDataOne[j] = (unsigned char)cvRound(fDisMIn); } } dstImage = binaryImage.clone();}////距离变换的扫描实现int main(){ Mat srcImage = imread("raw1.jpg"); imshow("srcImg",srcImage); if (!srcImage.data) { cout << "读入图片错误!" << endl; system("pause"); return -1; } Mat dstImage; distanceTrans(srcImage, dstImage); imshow("距离变换图像", dstImage); waitKey(); return 0;}