用数列极限定义证明

2025-07-15 19:46:13

证明:对任意的ε>0,解不等式

│1/√n│=1/√n<ε

得n>1/ε²,取N=[1/ε²]+1。

于是,对任意的ε>0,总存在自然数取N=[1/ε²]+1。当n>N时,有│1/√n│<ε

故lim(n->∞)(1/√n)=0。

用数列极限定义证明

N的相应性 

一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。

又因为ε是任意小的正数,所以ε/2 、3ε 、ε2等也都在任意小的正数范围,因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。

以上内容参考:百度百科-极限

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢