学好数学小方法

2025-10-20 16:06:35

1、变式思维中,对称思想是很重要的一种。对称思想往往可以解决很多问题。举个现实生活中的例子来说,日本一个生产味精的企业有段时间利润一直上不去,就召开了一个公司内部的研讨会。会上大家拿出了很多方法,比如降低成本等等,但因效果不明显,都没有被采用。后来进行消费者调研时,有个家庭主妇说,味精都是瓶装的,上面有很多小眼儿,可以增大小眼儿,这样做饭时大家就用得多了,用得多了,销售量就上去了

学好数学小方法

2、这条建议被采纳并且实施,果然效果很好。其实员工是从生产的源头来考虑问题,而家庭主妇是从消费一方来考虑问题,这就是思维的对称性

学好数学小方法

3、学数学的过程中,一道题从已知走向结果、从结果走向已知也都体现了思维的对称性。有道很经典的题目:1/2+1/4+1/8+…+1/256。可以从前往后算,1/2+1/4=3/4,3/4+1/8=7/8……,发现规律后就会知道,最后答案等于255/256,也可以在式子最后加一个1/256(这也是构造思想的体现),从后往前算,得出得数1,然后再减去多余的1/256。这都是思维对称性的体现。

学好数学小方法

4、一解多题,锻炼归纳思维

学好数学小方法

5、每个学段所用到的数学方法其实就几种。可以经常采用一解多题的方法来指导学生弄通某一种数学方法,比如这节课就只讲方程思想,下节课讲另一个专题。

学好数学小方法

6、用发展的眼光给学生讲题

学好数学小方法

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
相关推荐
  • 阅读量:175
  • 阅读量:78
  • 阅读量:52
  • 阅读量:63
  • 阅读量:149
  • 猜你喜欢