含π-α诱导类型三角函数的不定积分
1、sin(π-α)=sin α
cos(π-α)=-cos α
tan(π-α)=-tan α
cot(π-α)=-cot α
sec(π-α)=-sec α
csc(π-α)=csc α
2、图例解析如下:

1、∫sin(π-α)dα
=-∫sin(π-α)d(π-α)
=cos(π-α)+c
=-cosα+c
2、图例解析如下:

1、∫cos(π-α)dα
=-∫cos(π-α)d(π-α)
=-sin(π-α)+c
=-sinα+c
2、图例解析如下:

1、∫tan(π-α)dα
=-∫[sin(π-α) d(π-α)/ cos(π-α)]
=∫d cos(π-α)/cos(π-α)
=ln|cos(π-α)|+c
=ln|cosα|+c
2、图例解析如下:

1、∫cot(π-α)dα
=-∫[cos(π-α) d(π-α)/ sin(π-α)]
=-∫d sin(π-α)/sin(π-α)
=-ln|sin(π-α)|+c
=-ln|sinα|+c
2、图例解析如下:

1、 ∫sec(π-α)dα
=-∫dα/ cos(π-α)
=-∫d(π-α)/ cos(π-α)
=-∫cos(π-α)d(π-α)/ [cos(π-α)]^2
=-∫dsin(π-α)/ {1-[sin(π-α)]^2}
=-∫dsin(π-α)/ {[1-sin(π-α)][1+ sin(π-α)]}
=-(1/2){∫dsin(π-α)/ [1-sin(π-α)]+∫dsin(π-α)/ [1+sin(π-α)]}
=-(1/2)ln{[1+sin(π-α)]/ [1-sin(π-α)]}+c
=-(1/2)ln[(1+sinα)/(1-sinα)]+c
=-(1/2)ln[(1+sinα)^2/(cosα)^2]+c
=-ln|(1+sinα)/cosα|+c
=-ln|secα+tanα|+c
2、图例解析如下:

1、 ∫csc(π-α)dα
=∫dα/ sin(π-α)
=-∫d(π-α)/ sin(π-α)
=-∫sin(π-α)d(π-α)/ [sin(π-α)]^2
=∫dcos(π-α)/ {1-[cos(π-α)]^2}
=∫dcos(π-α)/ {[1-cos(π-α)][1+ cos(π-α)]}
=(1/2){∫dcos(π-α)/ [1-cos(π-α)]+∫dcos(π-α)/ [1+cos(π-α)]}
=(1/2)ln{[1+cos(π-α)]/ [1-cos(π-α)]}+c
=(1/2)ln[(1-cosα)/(1+cosα)]+c
=(1/2)ln[(1-cosα)^2/(sinα)^2]+c
=ln|(1-cosα)/sinα|+c
=ln|cscα-cotα|+c
2、图例解析如下:
