含2π+α诱导类型三角函数的不定积分
本经验介绍含2π+α诱导类型三角函数的不定积分,即求∫sin(2息遴颞阈π+α)dα,∫cos(2π+α)dα,∫tan(2π+α)dα,∫cot(2π+α)dα,∫s髫潋啜缅ec(2π+α)dα,∫csc(2π+α)dα的步骤。
工具/原料
三角函数基本知识
不定积分基本知识
1.含2π+α的诱导公式
1、sin(2π+α)=sin αcos(2π+α)=cos αtan(2π+α)=tan αcot(2π+α)=cot αsec(2π+α)=sec αcsc(2π+α)=csc α
2、图例解析如下:

3.cos(2π+α)dα
1、∫cos(2π+α)dα=∫cos(2π+α)d(2π+α)=sin(2π+α)+c=sinα+c
2、图例解析如下:

5.cot(2π+α)dα
1、∫cot(2π+α)dα=∫[cos(2π+α)d(2π+α)/ sin(2π+α)]=∫d sin(2π+α)/sin(2π+α)=ln|sin(2π+α)|+c=ln|sinα|+c
2、图例解析如下:

7.csc(2π+α)dα
1、∫csc(2π+α)dα屏顿幂垂=∫dα/ sin(2π+α)=∫d(2π+α)/ sin(2π+α)=∫sin(2π+α)d(2π敫苻匈酃+α)/ [sin(2π+α)]^2=-∫dcos(2π+α)/ {1-[cos(2π+α)]^2}=-∫dcos(2π+α)/ {[1-cos(2π+α)][1+ cos(2π+α)]}=-(1/2){∫dcos(2π+α)/ [1-cos(2π+α)]+∫dcos(2π+α)/ [1+cos(2π+α)]}=-(1/2)ln{[1+cos(2π+α)]/ [1-cos(2π+α)]}+c=-(1/2)ln[(1+cosα)/(1-cosα)]+c=-(1/2)ln[(1+cosα)^2/(sinα)^2]+c=-ln|(1+cosα)/sinα|+c=-ln|cscα+cota|+c
2、图例解析如下:
