椭圆二级结论是什么呢
1、当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。
2、当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
3、当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。
4、当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。
5、当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。
第一定义:平面内与两定点F1、F2的距离的和等于常数2a(2a≥|F1F2|)的动点P的轨迹叫做椭圆。即:其中两定点F1、F2叫做椭圆的焦点,两焦点的距离|F1F2|=2c≤2a叫做椭圆的焦距。P为椭圆的动点。
第二定义:椭圆平面内到定点F(c,0)的距离和到定直线l:x=a/c(F不在l上)的距离之比为常数从C/A,(即离心率,0<e<1)的点的轨迹是椭圆。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:30
阅读量:47
阅读量:32
阅读量:47
阅读量:76