Mathematica基础——曲线的内蕴性质之曲率

2025-05-05 17:09:58

这节,学习一下Mathematica处理曲线曲率的方法!

Mathematica基础——曲线的内蕴性质之曲率Mathematica基础——曲线的内蕴性质之曲率

3、Fermat螺旋的极坐标方程是:r=Sqrt[t]。怎么计算它的曲率呢?方法如下:Simplify[ArcCurvature[{t, t^2}, t, "Polar"], t > 0]//TraditionalForm

Mathematica基础——曲线的内蕴性质之曲率

4、曲率半悄钸碌灵径等于曲率的倒数:双纽线[t_] := Cos[t]/(1 + Sin[t]^2) {1, Sin[t]}双纽线曲率半径=1/ArcCurvature[双纽线[t],t]

Mathematica基础——曲线的内蕴性质之曲率Mathematica基础——曲线的内蕴性质之曲率
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢