数学极限练习题及计算过程举例A14

2025-12-01 16:33:23

1、1.计算lim(n→∞)(18n²-17)/(21n⁴+18n-16)

解:观察所求极限特征,可知所求极限的分母此时为2,分子的次数为4,且分子分母没有可约的因子,则当n趋近无穷大时,所求极限等于0。

本题计算方法为分子分母同时除以n⁴,即:

lim(n→∞)(18n²-17)/(21n⁴+18n-16)

=lim(n→∞)(18/n-17/n⁴)/(21+18/n³-16/n⁴),

=0。



数学极限练习题及计算过程举例A14

2、2.计算lim(n→∞)(45n-12n-11)/(15+11n-39n²)

解:思路一:观察所求极限特征,可知所求极限的分子分母的次数相同均为2,且分子分母没有可约的因子,则分子分母同时除以n²,即:

lim(n→∞)(45n²-12n-11)/(15+11n-39n²)

=lim(n→∞)(45-12/n-11/n²)/(15/n+11/n-39),

=(45-0)/(0-39),

=-15/13。

   

数学极限练习题及计算过程举例A14

3、思路二:本题所求极限符合洛必达法则,有:

lim(n→∞)( 45n²-12n-11)/(15+11n-39n²)

=lim(n→∞)(90n-12)/(11-78n),继续使用罗必塔法则,

=lim(n→∞)(90-0)/(0-78),

=-15/13。

数学极限练习题及计算过程举例A14

4、3.求极限lim(x→1)(x³-15x+14)/(x⁴-21x+20)

解:观察极限特征,所求极限为定点x趋近于1,又分子分母含有公因式x-1,即x=1是极限函数的可去间断点,则:

lim(x→1)(x³-15x+14)/(x⁴-21x+20)

=lim(x→1)(x-1)(x²+x-14)/[(x-1)(x³+x²+x-20)],

=lim(x→1)(x²+x-14)/(x³+x²+x-20),

=(1+1-14)/(1+1+1-20),

=12/17。

数学极限练习题及计算过程举例A14

5、4.求lim(x→0)(15x+20sin5x)/(32x-14sin3x)

解:思路一:本题思路主要通过重要极限公式lim(x→0)sinx/x=1应用计算而得,则:

lim(x→0)(15x+20sin5x)/(32x-14sin3x),

=lim(x→0)(15+20sin5x/x)/(32-14sin3x/x),

=lim(x→0)(15+100sin5x/5x)/(32-42sin3x/3x),

=(15+100)/(32-42),

=-23/2。


数学极限练习题及计算过程举例A14

6、思路二:使用罗必塔法则计算有:

lim(x→0)(15x+20sin5x)/(32x-14sin3x),

=lim(x→0)(15+20*5cos5x)/(32-14*3cos3x),

=(15+20*5)/(32-14*3),

=-23/2。

数学极限练习题及计算过程举例A14

7、5.求lim(x→∞)(x²sin1/x)/(27x+30)。

解:本题思路是分子分母同时除以x,并变形使用重要极限公式lim(x→0)sinx/x=1,则:

lim(x→∞)(x²sin1/x)/(27x+30)

=lim(x→∞)(xsin1/x)/[(27x+30)/x],

=lim(x→∞)[sin(1/x)/(1/x)]/[27+(30/x)],

=1/{lim(x→∞)[27+(30/x)]},

=1/27。

数学极限练习题及计算过程举例A14

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢